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and Ri~,ht Circular Cylinders* 
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The angular intensity dependence of X-rays scattered at small angles from randomly oriented 
particles in the colloidal size range has been evaluated numerically for ellipsoids of revolution and 
right circular cylinders of a wide range of axial ratios. The usefulness of the result with respect to 
experimental determination of colloidal shapes is discussed. I t  is shown that, for all the elongated 
shapes studied, subsidiary maxima which appear in the low-intensity region of the scattering curve 
are a function of the equatorial radius of the particle. The results are compared with a limiting 
expression for the scattering from very elongated cylinders at very large angles, and it is shown 
that this limiting expression is a good approximation for all elongated cylinders over a wide angular 
range. 

The subsidiary maxima are demonstrated experimentally in the scattering from solutions of 
randomly oriented tobacco mosaic virus. 

Introduct ion 

Information concerning the shape of colloidal particles 
may  be obtained by examination of the angular 
intensity distribution of X-rays scattered at  small 
angles from a colloidal solution. In practice, this is 
done by comparison of experimentally observed scat- 
tering distributions with those calculated from 
theoretical considerations for simple geometrical 
shapes. 

The scattering is a maximum in the forward direc- 
tion and drops off rapidly, as the angle increases, in a 
manner characteristic of the particle shape. To derive 
the scattering from a solution containing macro- 
molecules of a particular shape; the scattering from 
a single particle of tha t  shape is calculated as an aver- 
age of all possible orientations of the figure with respect 
to the incident X-ray beam, and the scattering from 
the solution is proportional to this result. Thus, the 
following equations refer to solutions containing a 
single macromolecular specie, in which the molecules 
have neither preferred orientation nor spatial order. 
In  addition, it must  be noted tha t  the results are 
rigorous only for molecules with a uniform electron 
distribution. 

The theoretical intensity distribution has been de- 
rived for several simple geometrical figures. The 
simplest theoretical expression for the intensity distri- 
bution, tha t  for a sphere, was originally derived by 
Rayteigh and is 

i(h) = ~,(ha) = [3 sin T~a-ha c°s ha] 2 ]/aa a (1) 
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where  h = 4:~ sin ½0/2; 2 is the X-ray  wavelength, 
0 is the scattering angle and a is the radius of the 
sphere. This, and the scattering functions following, 
are normalized for i(0) = 1. 

The scattering from an ellipsoid of revolution was 
derived by Guinier (1939). :For an ellipsoid of semi- 
axes a, a, va, his result may be written as 

i(h) = +y~(v2-1)]]dy , (2) 

where ~b2 has the same functional dependence on its 
argument as in (1). Equat ion (2) cannot be integrated 
directly. Numerical solutions have been obtained for 
several axial ratios over an intensity range of i(0) to 
about 10 -2 × i (0) by Guinier using a simple summation, 
and by Roess & Shull (1947) using hypergeometric 
series. Schmidt (1953) used Simpson's rule to evaluate 
the integral for slightly prolate ellipsoids (v _< 1.5). 
Porod (1948) derived an equivalent power series ex- 
pansion which he has calculated down to about 
l0 -~ × i(0). 

Fournet  (1951) has derived the scattering from a 
right circular cylinder of radius a and length 2va; 
his result may be written as 

i(h) = 4 ~1 j~(haV[l_ye])  sin s (havy) dy (3) 
• I0 (hal/[1-ye]) z (havy) 2 ' 

where J1 is the Bessel function of order 1. Pored has 
derived a power-series expansion for scattering from 
an elongated cylinder (v > 1) and evaluated it for 
several v's to 10 -e x i(0). 

In  the s tudy of globul, ar proteins by small-angle 
X-ray scattering, it is often possible to. examine criti- 
cally the scattering down to 10-4x i(0). With the ex- 
ception of the scattering functions for spheres, which 
are well tabulated,  and for the prolate ellipsoids cal- 
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Fig. 1. (a) Scattering functions for oblate ellipsoids of revolution. (b) Scattering functions for prolate ellipsoids of revolution. 
(c) Scattering functions for flattened right circular cylinders. (d) Scattering functions for elongated right circular cylinders. 

culated by Schmidt, intensity distributions are only 
known out to angles where the intensity is down to 
10-2×i(0). In this range, the curves have no remark- 
able distinguishing features, and it is often difficult 

to choose between several possible shapes. Thus it is 
desirable to have accurate calculations through a 
range at least as great as the experimental equipment 
is capable of detecting. Accordingly, the scattering 
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functions for ellipsoids of revolution and right circular 
cylinders were calculated with the aid of an electronic 
digital computer, the I BM  Magnetic Drum Data- 
Processing Machine, Type 650, in the Numerical 
Analysis Laboratory of the University of Wisconsin. 

Computation 
Guinier has shown that  the scattering curves of all 
particles with the same radius of gyration have the 
same limiting shape as h -+ 0; therefore, the intensity 
was calculated (at half-integer intervals) as a function 
of hR where R = [(2+v2)/5]½a is the radius of gyra- 
tion for ellipsoids and R = [(3+2v2)/6]½a is the radius 
of gyration for cylinders. 

The equation for ellipsoids (2) was evaluated for 
axial ratios of v -- 1/10, 1/5, 1/4, 1/3, 1/2, 1/1.5, 1/1.4, 
1/1.3, 1.5, 2, 3, 4, 6, 10. That  for cylinders (3) was 
evaluated for v = 1/10, 1/6, 1/4, 1/3, 1/2, 1/1.5, 1/1.3, 
1, 1.5, 2, 3, 4, 6, 10. For most of these cases, the cal- 
culation includes an intensity range to 10-4×i(0). 

The integrals were evaluated by Gauss's method for 
numerical quadrature. Each point was determined to 
an accuracy of at least 1%. The results are shown 
graphically* in Fig. 1; they agree (within correspond- 
ing regions) with those calculated by the authors 
mentioned above. Discussion 
Certain qualitative features of the scattering curves 
are apparent, and should be of value in choosing be- 
tween elongated and flattened ellipsoids and cylinders. 
The elongated shapes show well defined, regularly 
spaced peaks of uniformly decreasing amplitude, in 
contrast with the flattened shapes, where the peaks, 
if present at all, are less pronounced, and irregular in 
spacing and amplitude. 

The peaks for elongated cylinders are significantly 
more pronounced than those for the prolate ellipsoids. 
Figs. l(b) and l(d) show that,  for elongated shapes, 
the position of the first peak is shifted to larger values 
of the abscissa as the axial ratio increases. The position 
of the first peak for prolate ellipsoids (v _> 1.5) may 
be expressed empirically as 5.16[(2+v2)/5]½ and for 
elongated cylinders (v _ 1), 5.07[(3+2v2)/6]½, with an 
accuracy of about 2%. That  is, for both cases, the 
position of the first peak is a function of the equatorial 
radius of the particle. Thus if the elongated shapes 
were plotted against ha instead of hR, the first peaks 
would all occur at the same position along the abscissa, 
i.e., 5.16 for ellipsoids and 5.07 for cylinders. The 
situation is analogous for the second peaks; ha=8-54 
for ellipsoids and ha = 8.21 for cylinders. Several of 
the curves for cylinders include a third peak; for these, 
a common value of ha = 11-5 is found. 

Porod (1948) has given a limiting expression for the 
scattering at large angles from very elongated cylinders 
of length 2H; it is 

* A limited quant i ty  of these results in tabular form are 
available upon request. 

2~ J~(ha) 
i(h) v >> 1, hay >> 1 (4) 

v (ha) 3 '  

The first three maxima of (4) occur respectively at 
ha = 5.04, 8-35, and 11.6. Thus it is seen that  the peak 
positions given by this limiting expression for cy!inders 
agree well for all cylinders of v >_ 1, and for prolate 
ellipsoids of v _> 1.5. 

In fact, (4) is a very good approximation to the 
scattering functions for cylinders of v ~ 2. This is 
demonstrated in Fig. 2, where points calculated from 

10-3[ / ~ ~ 
; 6 9 

ha 
Fig. 2. Comparison of exact scattering functions for elongated 

ellipsoids with Porod's approximation (solid line). 

the exact theoretical expression for several cylinders 
are superimposed on a curve representing Porod's 
approximation. This curve becomes infinite at h = 0 
and extends to zero intensity at the minima, in con- 
trast  with the exact function which is finite in these 
regions. As would be expected, however, from the 
original limits imposed on (4), the differences become 
markedly less as v increases. 

Application of results 
The scattering functions presented here represent the 
scattering from a system satisfying the conditions 
mentioned above, i.e., random orientation, mono- 
dispersity, and no interaction between particles. 
Random orientation may be safely assumed in suf- 
ficiently dilute colloidal solutions. A polydisperse 
system will give a scattering curve which represents a 
weight average of the scattering from each component; 
thus, before an experimental curve is compared with 
the theoretical curves, independent examination of the 
solution is imperative to ensure tha t  the solution 
contains a single macromolecular specie. As the aver- 
age volume occupied by the particles approaches the 
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same order of magnitude as the total available volume, 
interparticle interference will result, and may become 
significant, especially at the smaller angles. This results 
in a distortion of the experimental curve; however, 
this may be minimized by using dilute solutions to 
obtain data in the very small angular range and more 
concentrated solutions for larger angles. In the very- 
small-angle region, the scattered intensity per particle 
is large; thus, a dilute solution may be used to 
minimize the interference effects which are important 
in this region. For larger angles, the scattered intensity 
per particle becomes small and the interference effects 
become insignificant; thus a concentrated solution 
may be used. 

Finally, it should be noted that  present experimental 
techniques do not render perfect collimation curves 
directly. Because the slits that  collimate the incident 
and scattered X-rays are necessarily of finite width, 
an intensity measurement at a particular angular 
setting includes X-rays scattered over a range of 
angles about the nominal angle, and, for small angles 
especially, this introduces a significant distortion of 
the true intensity distribution. Thus for maximum 
utilization of the theoretical curves presented here, 
methods must be applied to reduce experimental 
curves to perfect collimation, or to 'smear' the perfect 
collimation curves to conform to the effects of a 
particular X-ray beam collimating system. 

Scatter ing f rom tobacco m o s a i c  v irus  

To demonstrate the subsidiary maxima noted above 
for elongated particles, the X-ray scattering from 
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Fig. 3. Scattering curve from randomly oriented tobacco 
mosaic virus. 

Circles: experimental points, 3% solution; triangles: 
experimental points, 1½% solution; dashed line: perfect 
collimation, 3 % solution. 

solutions of randomly oriented tobacco mosaic virus* 
was investigated. 

The experimental results are shown in Fig. 3. The 
data for the 3 % solution have been corrected for the 
smearing effects due to finite slit size, and the result 
is the lower (dashed) curve; this is the perfect collima- 
tion scattering curve, and thus may be compared 
with the results of the preceding sections. 

Because it was not possible to get data at sufficiently 
small angles, i(0) was not determined; consequently, 
the curves of Fig. 3 are not normalized. 

Particular care was taken to ensure that  the solu- 
tions under investigation had no oriented phase. I t  
was examined for birefringence by placing it between 
cross polaroids while in the sample holder used for the 
scattering experiments; absence of birefringence, or 
tactoid formation, as described by Bernal & Fan- 
kuchen (1941), was taken as the criterion for random 
orientation. The agreement in shape of the scattering 
curves for the 3% and 1½% solutions gives further 
assurance that  there was no preferred orientation 
which could affect the scattering, since preferred 
orientation is not associated with solutions of concen- 
tration less than 2%. 

The expected subsidiary maxima are clearly ob- 
served. The first has its maximum at 0.0152 radians. 
According to the above results, this should be related 
to the cross-sectional radius, a, of the virus by ha = 
5.07. Using this expression (;t = 1.54 A), a is cal- 
culated to be 82 A. This agrees well with the value of 
84 /~ measured by Caspar (1956). 

For the second peak, the theoretical results predict 
ha = 8.21; the position of the second peak is 0.029 
radians; from this, a is calculated to be 70 A. The 
discrepancy between this and the radius calculated 
from the first peak is greater than experimental un- 
certainties; it can be explained by considering the 
internal structure of the virus since the theoretical 
results discussed here are rigorous only for particles 
of uniform electron distribution, and Caspar has shown 
that there are marked inhomogeneities in the electron 
distribution in the tobacco mosaic virus molecule. 

The author is indebted to Dr J. W. Anderegg and 
Prof. W. W. Beeman for interesting discussions and 
valuable criticisms during the course of this work. 
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